Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Lectin-like oxidized low-density lipoprotein receptor-1 abrogation causes resistance to inflammatory bone destruction in mice, despite promoting osteoclastogenesis in the steady state.

Bone 2015 June
Inflammatory bone diseases have been attributed to increased bone resorption by augmented and activated bone-resorbing osteoclasts in response to inflammation. Although the production of diverse proinflammatory cytokines is induced at the inflamed sites, the inflammation also generates reactive oxygen species that modify many biological compounds, including lipids. Among the oxidized low-density lipoprotein (LDL) receptors, lectin-like oxidized LDL receptor-1 (LOX-1), which is a key molecule in the pathogenesis of multifactorial inflammatory atherosclerosis, was downregulated with osteoclast differentiation. Here, we demonstrate that LOX-1 negatively regulates osteoclast differentiation by basically suppressing the cell-cell fusion of preosteoclasts. The LOX-1-deleted (LOX-1(-/-)) mice consistently decreased the trabecular bone mass because of elevated bone resorption during the growing phase. In contrast, when the calvaria was inflamed by a local lipopolysaccharide-injection, the inflammation-induced bone destruction accompanied by the elevated expression of osteoclastogenesis-related genes was reduced by LOX-1 deficiency. Moreover, the expression of receptor activator of NF-κB ligand (RANKL), a trigger molecule for osteoclast differentiation, evoked by the inflammation was also abrogated in the LOX-1(-/-) mice. Osteoblasts, the major producers of RANKL, also expressed LOX-1 in response to proinflammatory agents, interleukin-1β and prostaglandin E2. In the co-culture of LOX-1(-/-) osteoblasts and wild-type osteoclast precursors, the osteoclastogenesis induced by interleukin-1β and prostaglandin E2 decreased; this process occurred in parallel with the downregulation of osteoblastic RANKL expression. Collectively, LOX-1 abrogation results in resistance to inflammatory bone destruction, despite promoting osteoclastogenesis in the steady state. Our findings indicate the novel involvement of LOX-1 in physiological bone homeostasis and inflammatory bone diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app