Add like
Add dislike
Add to saved papers

Decreased expression of hepatic glucokinase in type 2 diabetes.

BACKGROUND/OBJECTIVES: Increased endogenous glucose production is a hallmark of type 2 diabetes. Evidence from animal models has suggested that a likely cause of this is increased mRNA expression of glucose 6-phosphatase and phosphoenolpyruvate carboxykinase (encoded by G6PC, PCK1 and PCK2). But another contributing factor may be decreased liver glucokinase (encoded by GCK).

METHODS: We examined expression of these enzymes in liver biopsies from 12 nondiabetic and 28 diabetic individuals. Diabetic patients were further separated into those with HbA1c lower or higher than 7.0.

RESULTS: In diabetic subjects with HbA1c > 7.0, we found that gluconeogenic enzymes were expressed normally, but GCK was suppressed more than 60%. Moreover, HbA1c and fasting glucose were negatively correlated with GCK, but showed no correlation with G6PC, PCK1, or PCK2.

CONCLUSION: These findings suggest an underlying dysregulation of hepatic GCK expression during frank diabetes, which has implications for the therapeutic use of glucokinase activators in this population.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app