JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Human trypanolytic factor APOL1 forms pH-gated cation-selective channels in planar lipid bilayers: relevance to trypanosome lysis.

Apolipoprotein L-1 (APOL1), the trypanolytic factor of human serum, can lyse several African trypanosome species including Trypanosoma brucei brucei, but not the human-infective pathogens T. brucei rhodesiense and T. brucei gambiense, which are resistant to lysis by human serum. Lysis follows the uptake of APOL1 into acidic endosomes and is apparently caused by colloid-osmotic swelling due to an increased ion permeability of the plasma membrane. Here we demonstrate that nanogram quantities of full-length recombinant APOL1 induce ideally cation-selective macroscopic conductances in planar lipid bilayers. The conductances were highly sensitive to pH: their induction required acidic pH (pH 5.3), but their magnitude could be increased 3,000-fold upon alkalinization of the milieu (pK(a) = 7.1). We show that this phenomenon can be attributed to the association of APOL1 with the bilayer at acidic pH, followed by the opening of APOL1-induced cation-selective channels upon pH neutralization. Furthermore, the conductance increase at neutral pH (but not membrane association at acidic pH) was prevented by the interaction of APOL1 with the serum resistance-associated protein, which is produced by T. brucei rhodesiense and prevents trypanosome lysis by APOL1. These data are consistent with a model of lysis that involves endocytic recycling of APOL1 and the formation of cation-selective channels, at neutral pH, in the parasite plasma membrane.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app