JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

TSC1 activates TGF-β-Smad2/3 signaling in growth arrest and epithelial-to-mesenchymal transition.

Developmental Cell 2015 March 10
The tuberous sclerosis proteins TSC1 and TSC2 are key integrators of growth factor signaling. They suppress cell growth and proliferation by acting in a heteromeric complex to inhibit the mammalian target of rapamycin complex 1 (mTORC1). In this study, we identify TSC1 as a component of the transforming growth factor β (TGF-β)-Smad2/3 pathway. Here, TSC1 functions independently of TSC2. TSC1 interacts with the TGF-β receptor complex and Smad2/3 and is required for their association with one another. TSC1 regulates TGF-β-induced Smad2/3 phosphorylation and target gene expression and controls TGF-β-induced growth arrest and epithelial-to-mesenchymal transition (EMT). Hyperactive Akt specifically activates TSC1-dependent cytostatic Smad signaling to induce growth arrest. Thus, TSC1 couples Akt activity to TGF-β-Smad2/3 signaling. This has implications for cancer treatments targeting phosphoinositide 3-kinases and Akt because they may impair tumor-suppressive cytostatic TGF-β signaling by inhibiting Akt- and TSC1-dependent Smad activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app