COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hypoxia preconditioning induced HIF-1α promotes glucose metabolism and protects mitochondria in liver I/R injury.

BACKGROUND: Ischemia and reperfusion (I/R) injury is one of the main lesions after liver transplantation. This study aims to detect hypoxia-induced HIF-1α protects transplanted liver against I/R injury by promoting glucose metabolism to decrease mitochondrial injury and apoptosis on rat model.

METHODS: The rats were given a treatment of 90 min non-lethal hypoxic preconditioning to induce and increase the HIF-1α expression. The autologous orthotopic liver transplantation model was used to imitate liver I/R injury.

RESULTS: Hypoxic-induced HIF-1α was detected to increase in liver tissue after 90-minute hypoxic environment (HP vs. Ctrl, *P<0.001). After operation, the expression of HIF-1α in liver tissue was also stayed at a high level. At 24h after operation, several genes were promoted, such as the levels of HK-2 (HP vs. AT, 24h, *P=0.004), Lactate dehydrogenase (LDHA) (HP vs. AT, 24h, *P=0.003), pyruvate dehydrogenase kinase (PDK-1) (HP vs. AT, 24h, *P=0.007), even the NF-κB and Erk pathways. From the TUNEL assay, the apoptosis in hypoxic preconditioning liver tissue was decreased compared with non-HP operative group at 12h after operation. The expressions of cleaved-caspase 3 (HP vs. AT, *P=0.0119) and PARP (HP vs. AT, *P=0.0134) in HP group were also significantly lower than AT group.

CONCLUSION: The hypoxia-induced HIF-1α could promote glucose metabolism to protect hepatocellular mitochondria from damage. It could be a useful way to protect liver against I/R injuries and inflammatory injury, and particularly promote the recovery of graft function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app