JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MicroRNA-22 regulates smooth muscle cell differentiation from stem cells by targeting methyl CpG-binding protein 2.

OBJECTIVE: In this study, we attempted to uncover the functional impact of microRNA-22 (miR-22) and its target gene in smooth muscle cell (SMC) differentiation and delineate the molecular mechanism involved.

APPROACH AND RESULTS: miR-22 was found to be significantly upregulated during SMC differentiation from embryonic stem cells and adventitia stem/progenitor cells. Enforced expression of miR-22 by its mimic, while knockdown of miR-22 by its antagomiR, promotes or inhibits SMC differentiation from embryonic stem cells and adventitia stem/progenitor cells, respectively. Expectedly, miR-22 overexpression in stem cells promoted SMC differentiation in vivo. Methyl CpG-binding protein 2 (MECP2) was predicted as one of the top targets of miR-22. Interestingly, the gene expression levels of MECP2 were significantly decreased during SMC differentiation, and MECP2 was dramatically decreased in miR-22 overexpressing cells but significantly increased when miR-22 was knockdown in the differentiating stem cells. Importantly, luciferase assay showed that miR-22 substantially inhibited wild-type, but not mutant MECP2-3' untranslated region-luciferase activity. In addition, modulation of MECP2 expression levels affects multiple SMC-specific gene expression in differentiated embryonic stem cells. Mechanistically, our data showed that MECP2 could transcriptionally repress SMC gene expression through modulating various SMC transcription factors, as well as several proven SMC differentiation regulators. Evidence also revealed that enrichment of H3K9 trimethylation around the promoter regions of the SMC differentiation regulators genes were significantly increased by MECP2 overexpression. Finally, miR-22 was upregulated by platelet-derived growth factor-BB and transforming growth factor-β through a transcriptional mechanism during SMC differentiation.

CONCLUSIONS: miR-22 plays an important role in SMC differentiation, and epigenetic regulation through MECP2 is required for miR-22 mediated SMC differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app