Add like
Add dislike
Add to saved papers

A Dynamic Programming Algorithm for Finding the Optimal Segmentation of an RNA Sequence in Secondary Structure Predictions.

In this paper, we present a dynamic programming algorithm that runs in polynomial time and allows us to achieve the optimal, non-overlapping segmentation of a long RNA sequence into segments (chunks). The secondary structure of each chunk is predicted independently, then combined with the structures predicted for the other chunks, to generate a complete secondary structure prediction that is thus a combination of local energy minima. The proposed approach not only is more efficient and accurate than other traditionally used methods that are based on global energy minimizations, but it also allows scientists to overcome computing and storage constraints when trying to predict the secondary structure of long RNA sequences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app