Journal Article
Multicenter Study
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

CYP2B6*6 allele and age substantially reduce steady-state ketamine clearance in chronic pain patients: impact on adverse effects.

AIMS: Ketamine analgesia is limited by low intrinsic efficacy compounded by large interindividual variability in drug responses, possibly due to the heterogeneity in drug concentration. The CYP2B6*6 allele is associated with substantially reduced ketamine metabolism in vitro and, therefore, may affect ketamine clearance. Our aims were to examine the impact of the CYP2B6*6 allele on ketamine plasma clearance and on adverse effects in chronic pain patients.

METHODS: CYP2B6 genotypes were identified in 49 chronic pain patients who received 24 h continuous subcutaneous infusions of ketamine. Steady-state plasma concentrations of ketamine (Css,k ) and norketamine (Css,nk ) were determined using HPLC.

RESULTS: The median plasma clearance of ketamine after 100 mg 24 h(-1) dose was significantly lower in patients with the CYP2B6*6/*6 (21.6 l h(-1) ) and CYP2B6*1/*6 (40.6 l h(-1) ) genotypes compared with patients with the CYP2B6*1/*1 genotype (68.1 l h(-1) , P < 0.001). The ketamine : norketamine plasma metabolic ratio was significantly higher in patients with the CYP2B6*6/*6 genotype than in those with the CYP2B6*1/*6 and the CYP2B6*1/*1 genotypes (P < 0.001). Patients who experienced adverse effects had lower plasma clearance (45.6 l h(-1) ) than those who did not (52.6 l h(-1) , P = 0.04). The CYP2B6*6 genotype and age, and their combined impact explained 40%, 30% and 60% of the variation in Css,k , respectively. Similar results were observed after higher doses.

CONCLUSIONS: The CYP2B6*6 allele is associated with a substantial decrease in steady-state ketamine plasma clearance in chronic pain patients. The decreased clearance and resultant higher plasma concentrations may be associated with a higher incidence of ketamine adverse effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app