Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Differential effects of age and type 2 diabetes on dynamic vs. peak response of pulmonary oxygen uptake during exercise.

We investigated if the magnitude of the type 2 diabetes (T2D)-induced impairments in peak oxygen uptake (V̇o2) and V̇o2 kinetics was affected by age. Thirty-three men with T2D (15 middle-aged, 18 older), and 21 nondiabetic (ND) men (11 middle-aged, 10 older) matched by age were recruited. Participants completed four 6-min bouts of constant-load cycling at 80% ventilatory threshold for the determination of V̇o2 kinetics. Cardiac output (inert-gas rebreathing) was recorded at rest and 30 and 240 s during two additional bouts. Peak V̇o2 (determined from a separate graded test) was significantly (P < 0.05) reduced in middle-aged and older men with T2D compared with their respective ND counterparts (middle-aged, 3.2 ± 0.5 vs. 2.5 ± 0.5 l/min; older, 2.7 ± 0.4 vs. 2.4 ± 0.4 l/min), and the magnitude of these impairments was not affected by age. However, the time constant of phase II of the V̇o2 response was only slowed (P < 0.05) in middle-aged men with T2D compared with healthy counterparts, whereas it was similar among older men with and without T2D (middle-aged, 26.8 ± 9.3 vs. 41.6 ± 12.1 s; older, 40.5 ± 7.8 vs. 41.1 ± 8.5 s). Similarly, the "gains" in systemic vascular conductance (estimated from the slope between cardiac output and mean arterial pressure responses) were lower (P < 0.05) in middle-aged men with T2D than ND controls, but similar between the older groups. The results suggest that the mechanisms by which T2D induces significant reductions in peak exercise performance are linked to a slower dynamic response of V̇o2 and reduced systemic vascular conductance responses in middle-aged men, whereas this is not the case in older men.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app