Add like
Add dislike
Add to saved papers

Limited role of Ca(2+)-activated Cl(-) current in early afterdepolarisations.

OBJECTIVES: The proarrhythmic, early afterdepolarisations during phase two of the action potential (phase-2 EADs) are associated with secondary Ca(2+) release from the sarcoplasmic reticulum. This makes it probable that the Ca(2+)-activated Cl(-) current (ICl(Ca)) may contribute to phase-2 EADs. Activation of ICl(Ca) during phase two of the action potential will result in a repolarising current and may thus be expected to prevent excessive depolarisation of phase-2 EADs. The present study was designed to test this hypothesis.

METHODS: The contribution of ICl(Ca) during phase-2 EADs was studied in enzymatically isolated sheep ventricular myocytes using the patch-clamp methodology. EADs were induced at a stimulus frequency of 0.5 Hz by exposure of the myocytes to 1 μM noradrenaline.

RESULTS: The ICl(Ca) blocker 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS, 0.5 mM) abolished phase-1 repolarisation of the action potential in all myocytes tested. This indicates that ICl(Ca) is present in all myocytes. However, DIDS had no effect on phase-2 EAD characteristics.

CONCLUSION: In sheep ventricular myocytes, ICl(Ca) contributes to phase-1 repolarisation of the action potential, but plays a limited role in phase-2 EADs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app