JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of retinoic acid and vitamin D3 on osteoblast differentiation and activity in aging.

Several studies have evidenced that in aging, osteoblast functional activity is impaired: osteoblast proliferation is slower and matrix deposition is less efficient. Because peroxisome-proliferator-activated receptor γ2 (PPARγ2) and fatty acids are important inhibitory signals in osteoblast development, we have investigated in human primary osteoblasts obtained from patients of different ages, the influence of retinoic acid and calcitriol on enzymes involved in differentiative (PPARγ2, β-catenin, and insulin-like growth factor 1) and metabolic (carnitine palmitoyltransferase 1) intracellular pathways, and on transglutaminase 2, as enzyme fundamental for stabilizing the newly deposited extracellular matrix in bone. Retinoic acid and calcitriol influenced, respectively, proliferation and differentiation of osteoblasts, and an increase in PPARγ2 expression was observed following retinoic acid administration, whereas a decrease was observed following calcitriol administration. Aging widely influenced all parameters analyzed (the proliferation, differentiation, and new matrix deposition are significantly reduced in aged osteoblasts), with the exception of PPARγ2, which we found to be constitutively overexpressed and not modulated by retinoic acid or calcitriol administration. Our findings show the impaired ability of aged osteoblasts to perform adequate functional response and draw attention to the therapeutic approaches for bone healing in elderly patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app