Journal Article
Research Support, N.I.H., Extramural
Review
Add like
Add dislike
Add to saved papers

Cortical development, electroencephalogram rhythms, and the sleep/wake cycle.

During adulthood, electroencephalogram (EEG) recordings are used to distinguish wake, non-rapid eye movement sleep, and rapid eye movement sleep states. The close association between behavioral states and EEG rhythms is reached late during development, after birth in humans and by the end of the second postnatal week in rats and mice. This critical time is also when cortical activity switches from a discontinuous to a continuous pattern. We review the major cellular and network changes that can account for this transition. After this close link is established, new evidence suggests that the slow waves of non-rapid eye movement sleep may function as markers to track cortical development. However, before the EEG can be used to identify behavioral states, two distinct sleep phases--quiet sleep and active sleep--are identified based on behavioral criteria and muscle activity. During this early phase of development, cortical activity is far from being disorganized, despite the presence of long periods of neuronal silence and the poor modulation by behavioral states. Specific EEG patterns, such as spindle bursts and gamma oscillations, have been identified very early on and are believed to play a significant role in the refinement of brain circuits. Because most early EEG patterns do not map to a specific behavioral state, their contribution to the presumptive role of sleep in brain maturation remains to be established and should be a major focus for future research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app