Add like
Add dislike
Add to saved papers

Urine metabolomics in rats after administration of ketamine.

In this study, we developed a urine metabonomic method, based on gas chromatography-mass spectrometry (GC-MS), to evaluate the effect of ketamine on rats. Pattern recognition analysis, including both principal component analysis and partial least squares discriminate analysis revealed that ketamine (50 mg/kg) induced metabolic perturbations. Compared with the control group, at day 7, the level of alanine, butanoic acid, glutamine, butanedioic, trimethylsiloxy, L-aspartic acid, D-glucose, cholesterol, acetamide, and oleic acid of the ketamine group was increased, while the level of 2,3,4-trihydroxybutyric acid, benzeneacetic acid, threitol, ribitol, xylitol, and glycine decreased. At day 14, the level of alanine, ethanedioic acid, L-proline, glycerol, tetradecanoic acid, l-serine, l-phenylalanine, L-aspartic acid, d-glucose, cholesterol, heptadecanoic acid, and acetamide in rat urine of the ketamine group was increased, while the 2,3,4-trihydroxybutyric acid, benzeneacetic acid, d-ribose, threitol, ribitol, glycine, pyrazine, and oleic acid levels decreased. Our results indicate that metabonomic methods based on GC-MS may be useful to elucidate ketamine abuse, through the exploration of biomarkers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app