Add like
Add dislike
Add to saved papers

Oscillatory Activity in Basal Ganglia and Motor Cortex in an Awake Behaving Rodent Model of Parkinson's Disease.

Basal Ganglia 2014 April 2
Exaggerated beta range (15-30 Hz) oscillatory activity is observed in the basal ganglia of Parkinson's disease (PD) patients during implantation of deep brain stimulation electrodes. This activity has been hypothesized to contribute to motor dysfunction in PD patients. However, it remains unclear how these oscillations develop and how motor circuits become entrained into a state of increased synchronization in this frequency range after loss of dopamine. It is also unclear whether this increase in neuronal synchronization actually plays a significant role in inducing the motor symptoms of this disorder. The hemiparkinsonian rat has emerged as a useful model for investigating relationships between loss of dopamine, increases in oscillatory activity in motor circuits and behavioral state. Chronic recordings from these animals show exaggerated activity in the high beta/low gamma range (30-35 Hz) in the dopamine cell-lesioned hemisphere. This activity is not evident when the animals are in an inattentive rest state, but it can be stably induced and monitored in the motor cortex and basal ganglia when they are engaged in an on-going activity such as treadmill walking. This review discusses data obtained from this animal model and the implications and limitations of this data for obtaining further insight into the significance of beta range activity in PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app