Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Laryngeal muscle activity during nasal high-frequency oscillatory ventilation in nonsedated newborn lambs.

BACKGROUND: We have previously shown that nasal pressure support ventilation (nPSV) can lead to an active inspiratory laryngeal narrowing in lambs. This, in turn, can limit lung ventilation and divert air into the digestive system, with potentially deleterious consequences. On the other hand, nasal high-frequency oscillatory ventilation (nHFOV) is particularly attractive in newborns, especially since, unlike nPSV, it does not require synchronization with the patient's inspiratory efforts.

OBJECTIVES: The main aim of the present study was to test the hypothesis that glottal constrictor muscle activity (EMG) does not develop during nHFOV. A secondary objective was to study laryngeal EMG during nHFOV-induced central apneas.

METHODS: Polysomnographic recordings were performed in 7 nonsedated lambs which were ventilated with increasing levels of nPSV and nHFOV at both 4 and 8 Hz, in random order. States of alertness, diaphragm and glottal muscle EMG, SpO2, and respiratory movements were continuously recorded.

RESULTS: While phasic inspiratory glottal constrictor EMG appeared with increasing nPSV levels in 6 out of 7 lambs, it was never observed with nHFOV. In addition, nHFOV at 4 Hz dramatically inhibited central respiratory drive in 4/7 lambs, with 64-100% of recording time spent in central apnea in 3 lambs. No glottal constrictor EMG was observed during these central apneas.

CONCLUSION: nHFOV does not induce glottal constrictor muscle EMG in nonsedated newborn lambs, in contrast to nPSV. This may be an additional advantage of nHFOV relative to nPSV.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app