Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A conserved regulatory logic controls temporal identity in mouse neural progenitors.

Neuron 2015 Februrary 5
Neural progenitors alter their output over time to generate different types of neurons and glia in specific chronological sequences, but this process remains poorly understood in vertebrates. Here we show that Casz1, the vertebrate ortholog of the Drosophila temporal identity factor castor, controls the production of mid-/late-born neurons in the murine retina. Casz1 is expressed from mid/late stages in retinal progenitor cells (RPCs), and conditional deletion of Casz1 increases production of early-born retinal neurons at the expense of later-born fates, whereas precocious misexpression of Casz1 has the opposite effect. In both cases, cell proliferation is unaffected, indicating that Casz1 does not control the timing of cell birth but instead biases RPC output directly. Just as Drosophila castor lies downstream of the early temporal identity factor hunchback, we find that the hunchback ortholog Ikzf1 represses Casz1. These results uncover a conserved strategy regulating temporal identity transitions from flies to mammals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app