Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Activation of PAX3-MET pathways due to miR-206 loss promotes gastric cancer metastasis.

Carcinogenesis 2015 March
MicroRNAs (miRNAs) are thought to have an important role in tumor metastasis by regulating diverse cellular pathways. Here, we describe the function and regulation network of miR-206 in gastric cancer (GC) metastasis. MiR-206 expression was downregulated in GC cells especially in high metastatic potential cells and was also significantly decreased in metastatic lesions compared with their corresponding primary tumor samples. Both gain- and loss-of-function studies confirmed that miR-206 significantly suppressed GC cell invasion and metastasis both in vitro and in vivo. Mechanistically, paired box gene 3 (PAX3) was identified as a functional target of miR-206 in GC cells. MiR-206 inhibited GC metastasis by negatively regulating expression of PAX3. In addition, PAX3 expression was markedly higher in GC tissues than in adjacent non-cancerous tissues. GC patients with positive PAX3 expression had shorter overall survival times. Transwell assays and in vivo metastasis assays demonstrated that overexpression of PAX3 significantly promoted the invasiveness and pulmonary metastasis of GC cells. On the other hand, downregulation of PAX3 markedly reduced cell metastatic potential. Mechanistic investigations indicated that prometastasis function of PAX3 was mediated by upregulating downstream target MET. Moreover, we found that levels of PAX3 and MET were positively correlated in matched human GC specimens, and their coexpression was associated with poor prognoses. In conclusion, our results reveal that miR-206-PAX3-MET signaling is critical to GC metastasis. Targeting the pathway described here may open new therapeutic prospects to restrict the metastatic potential of GC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app