Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Interplay between inhibitory ferric and stimulatory curcumin regulates phosphorylation-dependent human cystic fibrosis transmembrane conductance regulator and ΔF508 activity.

Biochemistry 2015 Februrary 25
Curcumin potentiates cystic fibrosis transmembrane conductance regulator (CFTR) activation in an ATP-independent but phosphorylation-dependent manner. The underlying molecular mechanisms are unclear. Here, HEK-293T cells cultured in an Fe(3+)-containing medium were transiently transfected with CFTR constructs, and the role of the inhibitory Fe(3+) bridge between intracellular loop 3 and the regulatory domain of CFTR in this pathway was investigated. The results showed that ethylenediaminetetraacetic acid (EDTA) stimulated phosphorylation-dependent CFTR activation and the stimulation was suppressed by the deletion of the regulatory domain or the insertion of a C832A mutation that removes the Fe(3+)-binding interface. Furthermore, curcumin potentiation of CFTR was significantly weakened not only by Fe(3+)-insensitive mutations at the interface between the regulatory domain and intracellular loop 3 but also by N-ethylmaleimide or EDTA pretreatment that removes Fe(3+). More importantly, potentiation of CFTR was completely suppressed by sufficient Fe(3+). Finally, the insertion of Fe(3+)-insensitive H950R/S768R increased the curcumin-independent activity of ΔF508 but weakened its curcumin potentiation. Thus, Fe(3+) homeostasis in epithelia may play a critical role in regulating CFTR activity, and targeting Fe(3+)-chelating potentiators may direct new therapies for cystic fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app