JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Early metabolic changes following ischemia onset in rats: an in vivo diffusion-weighted imaging and 1H-magnetic resonance spectroscopy study at 7.0 T.

Despite improvements in imaging techniques, it remains challenging to quantitatively assess the time of ischemic onset of an acute ischemic stroke. It is crucial to evaluate the early signs of infarction, which are predictive of responses to recombinant tissue plasminogen activator within a treatment window of 4.5 h after stroke induction. The aim of the present study was to assess and quantify the onset time for hyperacute middle cerebral artery occlusion (MCAO) ischemic stroke by measuring the apparent diffusion coefficient (ADC) of diffusion‑weighted imaging (DWI) and 1H‑magnetic resonance spectroscopy (MRS) at 7.0 T. DWI, conventional T2‑weighted imaging (T2WI) and subsequent focal ADCs were employed to evaluate ischemic brain lesions in a rat model of MCAO (n=20) at different time‑points following a stroke. A quantitation of local changes in metabolite concentrations within the lesions was performed using MRS. Proton metabolites were quantified automatically using LCModel software. At 30 min after MCAO, intense signals were observed in the DWI spectra of all animals. No abnormal signal was observed within 3 h by T2WI. ADC images of the central area, peripheral striping and on the fringes of the infarction demonstrated a lower signal than that of the normal side. The ADC decreased significantly within 30 min after infarction, followed by a gradual elevation in volatility levels and then becoming relatively stable at a lower level 3 h later. MRS exhibited a consistent elevation of lactate and reduced N‑acetyl aspartic acid. Glutamate and taurine reached a maximum 2 h after MCAO and began to decrease 1 h later. In conclusion, the present study demonstrated that hyperacute ischemic stroke can be quantitatively detected with the application of ADC, DWI and MRS. These methods may also be used to quantitatively assess the ischemic onset time of a hyperacute stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app