Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

P2C-Type ATPases and Their Regulation.

P2C-type ATPases are a subfamily of P-type ATPases comprising Na(+)/K(+)-ATPase and H(+)/K(+)-ATPase. Na(+)/K(+)-ATPase is ubiquitously expressed and has been implicated in several neurological diseases, whereas H(+)/K(+)-ATPase is found principally in the colon, stomach, and kidney. Both ATPases have two subunits, α and β, but Na(+)/K(+)-ATPase also has a regulatory subunit called FXYD, which has an important role in cancer. The most important functions of these ATPases are homeostasis, potassium regulation, and maintaining a gradient in different cell types, like epithelial cells. Na(+)/K(+)-ATPase has become a center of attention ever since it was proposed that it might play a crucial role in neurological disorders such as bipolar disorder, mania, depression, familial hemiplegic migraine, rapid-onset dystonia parkinsonism, chronic stress, epileptogenesis, and Alzheimer's disease. On the other hand, it has been reported that lithium could have a neuroprotective effect against ouabain, which is the best known Na(+)/K(+)-ATPase inhibitor, but and high concentrations of lithium could affect negatively H(+)/K(+)-ATPase activity, that has a key role in regulating acidosis and potassium deficiencies. Finally, potassium homeostasis regulation is composed of two main mechanisms, extrarenal and renal. Extrarenal mechanism controls plasma levels, shifting potassium from the extracellular to the intracellular, whereas renal mechanism concerns with body balance and is influenced by potassium intake and its urinary excretion. In this article, we discuss the functions, isoforms, and localization of P2C-type ATPases, describe some of their modulators, and discuss their implications in some diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app