Add like
Add dislike
Add to saved papers

Multiplexed separations for biomarker discovery in metabolomics: Elucidating adaptive responses to exercise training.

Electrophoresis 2015 September
High efficiency separations are needed to enhance selectivity, mass spectral quality, and quantitative performance in metabolomic studies. However, low sample throughput and complicated data preprocessing remain major bottlenecks to biomarker discovery. We introduce an accelerated data workflow to identify plasma metabolite signatures of exercise responsiveness when using multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS). This multiplexed separation platform takes advantage of customizable serial injections to enhance sample throughput and data fidelity based on temporally resolved ion signals derived from seven different sample segments analyzed within a single run. MSI-CE-MS was applied to explore the adaptive metabolic responses of a cohort of overweight/obese women (BMI > 25, n = 9) performing a 6-wk high-intensity interval training intervention using a repeated measures/cross-over study design. Venous blood samples were collected from each subject at three time intervals (baseline, postexercise, recovery) in their naïve and trained states while completing standardized cycling trials at the same absolute workload. Complementary statistical methods were used to classify dynamic changes in plasma metabolism associated with strenuous exercise and training status. Positive adaptations to exercise were associated with training-induced upregulation in plasma l-carnitine at rest due to improved muscle oxidative capacity, and greater antioxidant capacity as reflected by lower circulating glutathionyl-l-cysteine mixed disulfide. Attenuation in plasma hypoxanthine and higher O-acetyl-l-carnitine levels postexercise also indicated lower energetic stress for trained women.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app