Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Genetic fidelity assessment in micropropagated plants using cytogenetical analysis and heterochromatin distribution: a case study with Nepenthes khasiana Hook f.

Protoplasma 2015 September
Rapid clonal propagation of selected genotypes has been one of the most extensively exploited approaches of biotechnology. However, inclusion of somaclonal variations in tissue-culture-derived plants results in the production of undesirable plant off-types which limits its applications in tissue culture industry. Therefore, the most critical concern has been the maintenance of genetic uniformity of micropropagated plants. Assessment of genetic fidelity in tissue-culture-raised plants of three consecutive regenerations of Nepenthes khasiana has been successfully carried out using chromosome counts and heterochromatin distribution pattern wherein changes in the number of chromosomes and the distribution of AT and GC base pairs were recorded. The cells studied in the plantlets of the first regeneration (23.33 %) showed deviant number of chromosome which was increased to 33.33 % and 40 % in the plantlets of the second and the third regenerations, respectively. Also, 4',6-diamidino-2-phenylindole (DAPI)(+) and chromomycin A3 (CMA)(+) binding sites, on an average of 5.74 ± 0.47 and 5.00 ± 0.30, were observed in the plantlets of the first regeneration. Subsequently, DAPI(+) binding sites were increased to 6.61 ± 0.39 and 6.74 ± 0.57 in the plantlets of the second and the third regenerations, respectively, with a corresponding decrease in the CMA(+) binding sites (4.63 ± 0.45 and 4.16 ± 0.47 CMA(+) sites in the plantlets of the second and the third regenerations, respectively). The study reveals an increase in cytological variations in the morphologically similar micropropagated plants of N. khasiana with the subsequent regenerations which further necessitate the determination of genetic integrity of micropropagated plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app