Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification of the target DNA sequence and characterization of DNA binding features of HlyU, and suggestion of a redox switch for hlyA expression in the human pathogen Vibrio cholerae from in silico studies.

Nucleic Acids Research 2015 Februrary 19
HlyU, a transcriptional regulator common in many Vibrio species, activates the hemolysin gene hlyA in Vibrio cholerae, the rtxA1 operon in Vibrio vulnificus and the genes of plp-vah1 and rtxACHBDE gene clusters in Vibrio anguillarum. The protein is also proposed to be a potential global virulence regulator for V. cholerae and V. vulnificus. Mechanisms of gene control by HlyU in V. vulnificus and V. anguillarum are reported. However, detailed elucidation of the interaction of HlyU in V. cholerae with its target DNA at the molecular level is not available. Here we report a 17-bp imperfect palindrome sequence, 5'-TAATTCAGACTAAATTA-3', 173 bp upstream of hlyA promoter, as the binding site of HlyU. This winged helix-turn-helix protein binds necessarily as a dimer with the recognition helices contacting the major grooves and the β-sheet wings, the minor grooves. Such interactions enhance hlyA promoter activity in vivo. Mutations affecting dimerization as well as those in the DNA-protein interface hamper DNA binding and transcription regulation. Molecular dynamic simulations show hydrogen bonding patterns involving residues at the mutation sites and confirmed their importance in DNA binding. On binding to HlyU, DNA deviates by ∼68º from linearity. Dynamics also suggest a possible redox control in HlyU.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app