Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification of Susceptibility Loci in IL6, RPS9/LILRB3, and an Intergenic Locus on Chromosome 21q22 in Takayasu Arteritis in a Genome-Wide Association Study.

OBJECTIVE: Takayasu arteritis is a rare large vessel vasculitis with incompletely understood etiology. This study was undertaken to perform the first unbiased genome-wide association analysis of Takayasu arteritis.

METHODS: Two independent cohorts of patients with Takayasu arteritis from Turkey and North America were included in our study. The Turkish cohort consisted of 559 patients and 489 controls, and the North American cohort consisted of 134 patients and 1,047 controls of European ancestry. Genotyping was performed using the Omni1-Quad and Omni2.5 genotyping arrays. Genotyping data were subjected to rigorous quality control measures and subsequently analyzed to discover genetic susceptibility loci for Takayasu arteritis.

RESULTS: We identified genetic susceptibility loci for Takayasu arteritis with a genome-wide level of significance in IL6 (rs2069837) (odds ratio [OR] 2.07, P = 6.70 × 10(-9)), RPS9/LILRB3 (rs11666543) (OR 1.65, P = 2.34 × 10(-8)), and an intergenic locus on chromosome 21q22 (rs2836878) (OR 1.79, P = 3.62 × 10(-10)). The genetic susceptibility locus in RPS9/LILRB3 lies within the leukocyte receptor complex gene cluster on chromosome 19q13.4, and the disease risk variant in this locus correlates with reduced expression of multiple genes including the inhibitory leukocyte immunoglobulin-like receptor gene LILRB3 (P = 2.29 × 10(-8)). In addition, we identified candidate susceptibility genes with suggestive levels of association (P < 1 × 10(-5)) with Takayasu arteritis, including PCSK5, LILRA3, PPM1G/NRBP1, and PTK2B.

CONCLUSION: Our findings indicate novel genetic susceptibility loci for Takayasu arteritis and uncover potentially important aspects of the pathophysiology of this form of vasculitis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app