JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

New potential biomarkers for mesterolone misuse in human urine by liquid chromatography quadrupole time-of-flight mass spectrometry.

In this paper, mesterolone metabolic profiles were investigated carefully. Mesterolone was administered to one healthy male volunteer. Urinary extracts were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry (LC-QTOFMS) for the first time. Liquid-liquid extraction was applied to processing urine samples, and dilute-shoot analyses of intact metabolites were also presented. In LC-QTOFMS analysis, chromatographic peaks for potential metabolites were hunt down by using the theoretical [M-H](-) as target ions in full scan experiment, and their actual deprotonated ions were analyzed in targeted MS/MS mode. Ten metabolites including seven new sulfate and three glucuronide conjugates were found for mesterolone. Because of no useful fragment ion for structural elucidation, gas chromatography-mass spectrometry instrumentation was employed to obtain structural details of the trimethylsilylated phase I metabolite released after solvolysis. Thus, their potential structures were proposed particularly by a combined MS approach. All the metabolites were also evaluated in terms of how long they could be detected, and S1 (1α-methyl-5α-androst-3-one-17β-sulfate) together with S2 (1α-methyl-5α-androst-17-one-3β-sulfate) was detected up to 9 days after oral administration, which could be the new potential biomarkers for mesterolone misuse.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app