COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Ampakines enhance weak endogenous respiratory drive and alleviate apnea in perinatal rats.

RATIONALE: Apnea of prematurity, which is prevalent among infants born at less than 34 weeks gestation, is treated with caffeine, theophylline, or aminophylline. However, not all newborns respond adequately to, or tolerate, methylxanthine administration, and thus alternative pharmacological therapies are required.

OBJECTIVES: Rodent models are used to test the hypothesis that the ampakine CX1739, a positive allosteric modulator of amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors, strengthens perinatal respiratory drive and reduces apneas. We also provide a systematic study of the effects of caffeine for comparison.

METHODS: Respiratory neural activity was recorded from brainstem-spinal cord in vitro perinatal rat preparations, and [Formula: see text]e was recorded in newborn rat pups using whole-body plethysmography under normoxic and hypoxic conditions.

MEASUREMENTS AND MAIN RESULTS: Using in vitro brainstem-spinal cord preparations, we found that CX1739 (10-100 μM) dose-dependently increases the frequency of respiratory activity generated by fetal and newborn rat preparations under normoxic and hypoxic conditions. Plethysmographic recordings in vivo from Postnatal Day 0 rats demonstrated that CX1739 (10 mg/kg) increases the frequency and regularity of ventilation, reduces apneas, and protects against hypoxia-induced respiratory depression.

CONCLUSIONS: The net effect of ampakine enhancement of respiratory drive in perinatal rodents is a marked increase in ventilation and the regularity of respiratory patterns in perinatal rat preparations. Importantly, from the perspective of clinical applications, CX1739 readily crosses the blood-brain barrier, is metabolically stable, and has passed through phase I and II clinical trials in adults.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app