Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fenofibrate (PPARalpha agonist) induces beige cell formation in subcutaneous white adipose tissue from diet-induced male obese mice.

Browning is characterized by the formation of beige/brite fat depots in subcutaneous white adipose tissue (sWAT). This study aimed to examine whether the chronic activation of PPARalpha by fenofibrate could induce beige cell depots in the sWAT of diet-induced obese mice. High-fat fed animals presented overweight, insulin resistance and displayed adverse sWAT remodeling. Fenofibrate significantly attenuated these parameters. Treated groups demonstrated active UCP-1 beige cell clusters within sWAT, confirmed through higher gene expression of PPARalpha, PPARbeta, PGC1alpha, BMP8B, UCP-1, PRDM16 and irisin in treated groups. PPARalpha activation seems to be pivotal to trigger browning through irisin induction and UCP-1 transcription, indicating that fenofibrate increased the expression of genes typical of brown adipose tissue (BAT) in the sWAT, characterizing the formation of beige cells. These findings put forward a possible role of PPARalpha as a promising therapeutic for metabolic diseases via beige cell induction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app