Add like
Add dislike
Add to saved papers

Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits.

Ambio 2015 January
Wetlands provide multiple ecosystem services, the sustainable use of which requires knowledge of the underlying ecological mechanisms. Functional traits, particularly the community-weighted mean trait (CWMT), provide a strong link between species communities and ecosystem functioning. We here combine species distribution modeling and plant functional traits to estimate the direction of change of ecosystem processes under climate change. We model changes in CWMT values for traits relevant to three key services, focusing on the regional species pool in the Norrström area (central Sweden) and three main wetland types. Our method predicts proportional shifts toward faster growing, more productive and taller species, which tend to increase CWMT values of specific leaf area and canopy height, whereas changes in root depth vary. The predicted changes in CWMT values suggest a potential increase in flood attenuation services, a potential increase in short (but not long)-term nutrient retention, and ambiguous outcomes for carbon sequestration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app