JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Targeted delivery of a sialic acid-blocking glycomimetic to cancer cells inhibits metastatic spread.

ACS Nano 2015 January 28
Sialic acid sugars are overexpressed by cancer cells and contribute to the metastatic cascade at multiple levels. Therapeutic interference of sialic acids, however, has been difficult to pursue because of the absence of dedicated tools. Here we show that a rationally designed sialic acid-blocking glycomimetic (P-3F(ax)-Neu5Ac) successfully prevents cancer metastasis. Formulation of P-3F(ax)--Neu5Ac into poly(lactic-co-glycolic acid nanoparticles coated with antityrosinase-related protein-1 antibodies allowed targeted delivery of P-3F(ax)--Neu5Ac into melanoma cells, slow release, and long-term sialic acid blockade. Most importantly, intravenous injections of melanoma-targeting P-3F(ax)--Neu5Ac nanoparticles prevented metastasis formation in a murine lung metastasis model. These findings stress the importance of sialoglycans in cancer metastasis and advocate that sialic acid blockade using rationally designed glycomimetics targeted to cancer cells can effectively prevent cancer metastases. This targeting strategy to interfere with sialic acid-dependent processes is broadly applicable not only for different types of cancer but also in infection and inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app