Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Rational design of an efficient, genetically encodable, protein-encased singlet oxygen photosensitizer.

Singlet oxygen, O(2)(a(1)Δ(g)), plays a key role in many processes of cell signaling. Limitations in mechanistic studies of such processes are generally associated with the difficulty of controlling the amount and location of O(2)(a(1)Δ(g)) production in or on a cell. As such, there is great need for a system that (a) selectively produces O(2)(a(1)Δ(g)) in appreciable and accurately quantifiable yields and (b) can be localized in a specific place at the suborganelle level. A genetically encodable, protein-encased photosensitizer is one way to achieve this goal. Through a systematic and rational approach involving mutations to a LOV2 protein that binds the chromophore flavin mononucleotide (FMN), we have developed a promising photosensitizer that overcomes many of the problems that affect related systems currently in use. Specifically, by decreasing the extent of hydrogen bonding between FMN and a specific amino acid residue in the local protein environment, we decrease the susceptibility of FMN to undesired photoinitiated electron-transfer reactions that kinetically compete with O(2)(a(1)Δ(g)) production. As a consequence, our protein-encased FMN system produces O(2)(a(1)Δ(g)) with the uniquely large quantum efficiency of 0.25 ± 0.03. We have also quantified other key photophysical parameters that characterize this sensitizer system, including unprecedented H(2)O/D(2)O solvent isotope effects on the O(2)(a(1)Δ(g)) formation kinetics and yields. As such, our results facilitate future systematic developments in this field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app