Add like
Add dislike
Add to saved papers

Analysis of HEp-2 images using MD-LBP and MAD-bagging.

Indirect immunofluorescence imaging is employed to identify antinuclear antibodies in HEp-2 cells which founds the basis for diagnosing autoimmune diseases and other important pathological conditions involving the immune system. Six categories of HEp-2 cells are generally considered, namely homogeneous, fine speckled, coarse speckled, nucleolar, cyto-plasmic, and centromere cells. Typically, this categorisation is performed manually by an expert and is hence both time consuming and subjective. In this paper, we present a method for automatically classifiying HEp-2 cells using texture information in conjunction with a suitable classification system. In particular, we extract multidimensional local binary pattern (MD-LBP) texture features to characterise the cell area. These then form the input for a classification stage, for which we employ a margin distribution based bagging pruning (MAD-Bagging) classifier ensemble. We evaluate our algorithm on the ICPR 2012 HEp-2 contest benchmark dataset, and demonstrate it to give excellent performance, superior to all algorithms that were entered in the competition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app