JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Suspension-Expansion of Bone Marrow Results in Small Mesenchymal Stem Cells Exhibiting Increased Transpulmonary Passage Following Intravenous Administration.

Mesenchymal stem cells (MSCs) have been extensively explored in a variety of regenerative medicine applications. The relatively large size of MSCs expanded in tissue culture flasks leads to retention in the microcirculation of the lungs following intravenous delivery, reducing their capacity to reach target sites. We explored whether the expansion of whole marrow in suspension cultures would yield smaller MSCs with increased capacity to traverse the pulmonary microcirculation compared with traditional monolayer cultures. We tested this hypothesis using rat marrow in a suspension bioreactor culture with fibronectin-coated microcarriers, leading to sustained expansion of both the microbead-adherent cells, as well as of a nonadherent cell fraction. Magnetic depletion of CD45(+) cells from the bioreactor cultures after 5 weeks led to a highly enriched CD73(+)/CD90(+)/CD105(+) MSC population. The bioreactor-grown MSCs were significantly smaller than parallel monolayer MSCs (15.1 ± 0.9 μm vs. 18.5 ± 2.3 μm diameter, p<0.05). When fluorescently labeled bioreactor-grown MSCs were intravenously injected into rats, the peak cell concentration in the arterial circulation was an order of magnitude higher than similarly delivered monolayer-grown MSCs (94.8 ± 29.6 vs. 8.2 ± 5.6/10(6) nucleated blood cells, respectively, p<0.05). At 24 h after intravenous injection of the LacZ-labeled bioreactor-grown MSCs, there was a significant threefold decrease in the LacZ-labeled MSCs trapped in the lungs, with a significant increase in the cells reaching the spleen and liver in comparison to their monolayer MSC counterparts. Bioreactor-grown whole marrow cell cultures yielded smaller MSCs with increased capacity to traverse the pulmonary microcirculation compared with traditionally expanded monolayer MSCs. This may significantly improve the capacity and efficiency of these cells to home to injury sites downstream of the lungs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app