Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Vasopressin decreases pulmonary-to-systemic vascular resistance ratio in a porcine model of severe hemorrhagic shock.

Shock 2015 May
Vasopressors are gaining renewed interest as treatment adjuncts in hemorrhagic shock. The ideal vasoconstrictor will increase systemic blood pressure without increasing pulmonary vascular resistance (PVR), which hinders pulmonary perfusion and exacerbates hypoxemia. However, the selectivity of pressors for pulmonary versus systemic vasoconstriction during hemorrhage has not been characterized. The purpose of this study was to test the hypothesis that vasopressin (VP) has distinct effects on pulmonary versus systemic hemodynamics, unlike the catecholamine vasopressors norepinephrine (NE) and phenylephrine (PE). Anesthetized and ventilated pigs were assigned to resuscitation with saline only (n = 7) or saline with VP (n = 6), NE (n = 6), or PE (n = 6). Animals were hemorrhaged to a target volume of 30 mL/kg and a mean arterial pressure of 35 mmHg. One hour after the start of hemorrhage, animals were resuscitated with saline up to one shed blood volume, followed by either additional saline or a vasopressor. Hemodynamics and oxygenation were measured hourly for 4 h after the start of hemorrhage. Vasopressin increased systemic vascular resistance (SVR) while sparing the pulmonary vasculature, leading to a 45% decrease in the PVR/SVR ratio compared with treatment with PE. Conversely, NE induced pulmonary hypertension and led to an increased PVR/SVR ratio associated with decreased oxygen saturation. Phenylephrine and crystalloid had no significant effect on the PVR/SVR ratio. Sparing of pulmonary vasoconstriction occurs only with VP, not with administration of crystalloid or catecholamine pressors. The ability of VP to maintain blood oxygenation indicates that VP may prevent hypoxemia in the management of hemorrhagic shock.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app