Add like
Add dislike
Add to saved papers

The graphical lasso: New insights and alternatives.

The graphical lasso [5] is an algorithm for learning the structure in an undirected Gaussian graphical model, using ℓ1 regularization to control the number of zeros in the precision matrix Θ = Σ (-1) [2, 11]. The R package GLASSO [5] is popular, fast, and allows one to efficiently build a path of models for different values of the tuning parameter. Convergence of GLASSO can be tricky; the converged precision matrix might not be the inverse of the estimated covariance, and occasionally it fails to converge with warm starts. In this paper we explain this behavior, and propose new algorithms that appear to outperform GLASSO. By studying the "normal equations" we see that, GLASSO is solving the dual of the graphical lasso penalized likelihood, by block coordinate ascent; a result which can also be found in [2]. In this dual, the target of estimation is Σ, the covariance matrix, rather than the precision matrix Θ. We propose similar primal algorithms P-GLASSO and DP-GLASSO, that also operate by block-coordinate descent, where Θ is the optimization target. We study all of these algorithms, and in particular different approaches to solving their coordinate sub-problems. We conclude that DP-GLASSO is superior from several points of view.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app