Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Influenza A infection attenuates relaxation responses of mouse tracheal smooth muscle evoked by acrolein.

Biochemical Pharmacology 2015 Februrary 16
The airway epithelium is an important source of relaxant mediators, and damage to the epithelium caused by respiratory tract viruses may contribute to airway hyperreactivity. The aim of this study was to determine whether influenza A-induced epithelial damage would modulate relaxation responses evoked by acrolein, a toxic and prevalent component of smoke. Male BALB/c mice were inoculated intranasally with influenza A/PR-8/34 (VIRUS-infected) or allantoic fluid (SHAM-infected). On day 4 post-inoculation, isometric tension recording studies were conducted on carbachol pre-contracted tracheal segments isolated from VIRUS and SHAM mice. Relaxant responses to acrolein (30 μM) were markedly smaller in VIRUS segments compared to SHAM segments (2 ± 1% relaxation vs. 28 ± 5%, n=14, p<0.01). Similarly, relaxation responses of VIRUS segments to the neuropeptide substance P (SP) were greatly attenuated (1 ± 1% vs. 47 ± 6% evoked by 1 nM SP, n=14, p<0.001). Consistent with epithelial damage, PGE2 release in response to both acrolein and SP were reduced in VIRUS segments (>35% reduction, n=6, p<0.01), as determined using ELISA. In contrast, exogenous PGE2 was 2.8-fold more potent in VIRUS relative to SHAM segments (-log EC50 7.82 ± 0.14 vs. 7.38 ± 0.05, n=7, p<0.01) whilst responses of VIRUS segments to the β-adrenoceptor agonist isoprenaline were similar to SHAM segments. In conclusion, relaxation responses evoked by acrolein were profoundly diminished in tracheal segments isolated from influenza A-infected mice. The mechanism through which influenza A infection attenuates this response appears to involve reduced production of PGE2 in response to SP due to epithelial cell loss, and may provide insight into the airway hyperreactivity observed with influenza A infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app