Add like
Add dislike
Add to saved papers

Nuclear-weighted X-ray maximum entropy method - NXMEM.

Subtle structural features such as disorder and anharmonic motion may be accurately characterized from nuclear density distributions (NDDs). As a viable alternative to neutron diffraction, this paper introduces a new approach named the nuclear-weighted X-ray maximum entropy method (NXMEM) for reconstructing pseudo NDDs. It calculates an electron-weighted nuclear density distribution (eNDD), exploiting that X-ray diffraction delivers data of superior quality, requires smaller sample volumes and has higher availability. NXMEM is tested on two widely different systems: PbTe and Ba(8)Ga(16)Sn(30). The first compound, PbTe, possesses a deceptively simple crystal structure on the macroscopic level that is unable to account for its excellent thermoelectric properties. The key mechanism involves local distortions, and the capability of NXMEM to probe this intriguing feature is established with simulated powder diffraction data. In the second compound, Ba(8)Ga(16)Sn(30), disorder among the Ba guest atoms is analysed with both experimental and simulated single-crystal diffraction data. In all cases, NXMEM outperforms the maximum entropy method by substantially enhancing the nuclear resolution. The induced improvements correlate with the amount of available data, rendering NXMEM especially powerful for powder and low-resolution single-crystal diffraction. The NXMEM procedure can be implemented in existing software and facilitates widespread characterization of disorder in functional materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app