JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The cellular and molecular basis of direction selectivity of Aδ-LTMRs.

Cell 2014 December 19
The perception of touch, including the direction of stimulus movement across the skin, begins with activation of low-threshold mechanosensory neurons (LTMRs) that innervate the skin. Here, we show that murine Aδ-LTMRs are preferentially tuned to deflection of body hairs in the caudal-to-rostral direction. This tuning property is explained by the finding that Aδ-LTMR lanceolate endings around hair follicles are polarized; they are concentrated on the caudal (downward) side of each hair follicle. The neurotrophic factor BDNF is synthesized in epithelial cells on the caudal, but not rostral, side of hair follicles, in close proximity to Aδ-LTMR lanceolate endings, which express TrkB. Moreover, ablation of BDNF in hair follicle epithelial cells disrupts polarization of Aδ-LTMR lanceolate endings and results in randomization of Aδ-LTMR responses to hair deflection. Thus, BDNF-TrkB signaling directs polarization of Aδ-LTMR lanceolate endings, which underlies direction-selective responsiveness of Aδ-LTMRs to hair deflection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app