Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Oxamate-mediated inhibition of lactate dehydrogenase induces protective autophagy in gastric cancer cells: involvement of the Akt-mTOR signaling pathway.

Cancer Letters 2015 March 2
Cancer cells produce a substantial amount of energy through aerobic glycolysis even in the presence of adequate oxygen. Lactate dehydrogenase (LDH), a key regulator of glycolysis, reversibly catalyzes the conversion of pyruvate to lactate. Recently, oxamate, an inhibitor of LDH, has been shown to be a promising anticancer agent. However, the detailed mechanism remains largely unclear. In this study, we demonstrate that oxamate inhibits the viability of human gastric cancer cells in a dose- and time-dependent manner. In addition, treatment with oxamate induces protective autophagy in gastric cancer cells. Moreover, autophagy inhibited by chloroquine or Beclin 1 small interfering RNA (siRNA) enhances oxamate-induced apoptosis and proliferation inhibition. Further study has shown that oxamate treatment significantly augments reactive oxygen species (ROS) production. Furthermore, cells pretreated with N-acetyl cysteine (NAC), a ROS inhibitor, display significantly reduced ROS production and attenuated oxamate-induced autophagy. Finally, functional studies reveal that the Akt-mTOR signaling pathway, a major negative regulator of autophagy, is inhibited by oxamate. Together, our results provide new insights regarding the biological and anti-proliferative activities of oxamate against gastric cancer, and may offer a promising therapeutic strategy for gastric cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app