Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Regulated inositol-requiring protein 1-dependent decay as a mechanism of corin RNA and protein deficiency in advanced human systolic heart failure.

BACKGROUND: The compensatory actions of the endogenous natriuretic peptide system require adequate processing of natriuretic peptide pro‐hormones into biologically active, carboxyl‐terminal fragments. Natriuretic peptide pro‐peptide processing is accomplished by corin, a transmembrane serine protease expressed by cardiomyocytes. Brain natriuretic peptide (BNP) processing is inadequate in advanced heart failure and is independently associated with adverse outcomes; however, the molecular mechanisms causing impaired BNP processing are not understood. We hypothesized that the development of endoplasmic reticulum stress in cardiomyocytes in advanced heart failure triggers inositol‐requiring protein 1 (IRE1)‐dependent corin mRNA decay, which would favor a molecular substrate favoring impaired natriuretic peptide pro‐peptide processing.

METHODS AND RESULTS: Two independent samples of hearts obtained from patients with advanced heart failure at transplant demonstrated that corin RNA was reduced as Atrial natriuretic peptide (ANP)/BNP RNA increased. Increases in spliced X‐box protein 1, a marker for IRE1‐endoribonuclease activity, were associated with decreased corin RNA. Moreover, ≈50% of the hearts demonstrated significant reductions in corin RNA and protein as compared to the nonfailing control sample. In vitro experiments demonstrated that induction of endoplasmic reticulum stress in cultured cardiomyocytes with thapsigargin activated IRE1's endoribonuclease activity and time‐dependent reductions in corin mRNA. In HL‐1 cells, overexpression of IRE1 activated IRE1 endoribonuclease activity and caused corin mRNA decay, whereas IRE1‐RNA interference with shRNA attenuated corin mRNA decay after induction of endoplasmic reticulum stress with thapsigargin. Pre‐treatment of cells with Actinomycin D to inhibit transcription did not alter the magnitude or time course of thapsigargin‐induced corin mRNA decline, supporting the hypothesis that this was the result of IRE1‐mediated corin mRNA degradation.

CONCLUSIONS: These data support the hypothesis that endoplasmic reticulum stress‐mediated, IRE1‐dependent targeted corin mRNA decay is a mechanism leading to corin mRNA resulting in corresponding corin protein deficiency may contribute to the pathophysiology of impaired natriuretic peptide pro‐hormone processing in humans processing in humans with advanced systolic heart failure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app