Add like
Add dislike
Add to saved papers

Kosterlitz-Thouless transitions and phase diagrams of the interacting monomer-dimer model on a checkerboard lattice.

Using the tensor network approach, we investigate the monomer-dimer models on a checkerboard lattice, in which there are interactions (with strength v) between the parallel dimers on half of the plaquettes. For the fully packed interacting dimer model, we observe a Kosterlitz-Thouless (KT) transition between the low-temperature symmetry breaking and the high-temperature critical phases; for the doped monomer-dimer case with finite chemical potential μ, we also find an order-disorder phase transition which is of second order instead. We use the boundary matrix product state approach to detect the KT and second-order phase transitions and obtain the phase diagrams v-T and μ-T. Moreover, for the noninteracting monomer-dimer model (setting μ=ν=0), we get an extraordinarily accurate determination of the free energy per site (negative of the monomer-dimer constant h_{2}) as f=-0.662798972833746 with the dimer density n=0.638123109228547, both of 15 correct digits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app