JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Intracerebroventricular metformin decreases body weight but has pro-oxidant effects and decreases survival.

Metformin (Met), which is an insulin-sensitizer, decreases insulin resistance and fasting insulin levels. The precise molecular target of Met is unknown; however, several reports have shown an inhibitory effect on mitochondrial complex I of the electron transport chain (ETC), which is a related site for reactive oxygen species production. In addition to peripheral effects, Met is capable of crossing the blood-brain barrier, thus regulating the central mechanism involved in appetite control. The present study explores the effects of intracerebroventricular (i.c.v.) infusion of Met on ROS production on brain, insulin sensitivity and metabolic and oxidative stress outcomes in CF1 mice. Metformin (Met 50 and 100 µg) was injected i.c.v. in mice daily for 7 days; the brain mitochondrial H2O2 production, food intake, body weight and fat pads were evaluated. The basal production of H2O2 of isolated mitochondria from the hippocampus and hypothalamus was significantly increased by Met (100 µg). There was increased peripheral sensitivity to insulin (Met 100 µg) and glucose tolerance tests (Met 50 and 100 µg). Moreover, Met decreased food intake, body weight, body temperature, fat pads and survival rates. Additionally, Met (1, 4 or 10 mM) decreased mitochondrial viability and increased the production of H2O2 in neuronal cell cultures. In summary, our data indicate that a high dose of Met injected directly into the brain has remarkable neurotoxic effects, as evidenced by hypothermia, hypoglycemia, disrupted mitochondrial ETC flux and decreased survival rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app