Add like
Add dislike
Add to saved papers

The Protective Effects of IGF-1 on Different Subpopulations of DRG Neurons with Neurotoxicity Induced by gp120 and Dideoxycytidine In Vitro.

Peripheral neuropathy induced by human immunodeficiency virus (HIV) infection and antiretroviral therapy is not only difficult to distinguish in clinical practice, but also difficult to relieve the pain symptoms by analgesics because of the severity of the disease at the later stage. Hence, to explore the mechanisms of HIV-related neuropathy and find new therapeutic options are particularly important for relieving neuropathic pain symptoms of the patients. In the present study, primary cultured embryonic rat dorsal root ganglion (DRG) neurons were used to determine the neurotoxic effects of HIV-gp120 protein and/or antiretroviral drug dideoxycytidine (ddC) and the therapeutic actions of insulin-like growth factor-1 (IGF-1) on gp120- or ddC-induced neurotoxicity. DRG neurons were exposed to gp120 (500 pmol/L), ddC (50 μmol/L), gp120 (500 pmol/L) plus ddC (50 μmol/L), gp120 (500 pmol/L) plus IGF-1 (20 nmol/L), ddC (50 μmol/L) plus IGF-1 (20 nmol/L), gp120 (500 pmol/L) plus ddC (50 μmol/L) plus IGF-1 (20 nmol/L), respectively, for 72 hours. The results showed that gp120 and/or ddC caused neurotoxicity of primary cultured DRG neurons. Interestingly, the severity of neurotoxicity induced by gp120 and ddC was different in different subpopulation of DRG neurons. gp120 mainly affected large diameter DRG neurons (>25 μm), whereas ddC mainly affected small diameter DRG neurons (≤25 μm). IGF-1 could reverse the neurotoxicity induced by gp120 and/or ddC on small, but not large, DRG neurons. These data provide new insights in elucidating the pathogenesis of HIV infection- or antiretroviral therapy-related peripheral neuropathy and facilitating the development of novel treatment strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app