Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Expression microarray as a tool to identify differentially expressed genes in horses suffering from inflammatory airway disease.

BACKGROUND: Inflammatory airway disease (IAD) affects performance and well-being of horses. Diagnosis is primarily reached by bronchoalveolar lavage (BAL) cytology which is invasive and requires sedation.

OBJECTIVES: The purpose of this study was to identify differential gene expression in peripheral blood of horses with IAD using species-specific expression microarrays.

METHODS: Equine gene expression microarrays were used to investigate global mRNA expression in circulating leukocytes from healthy, IAD-affected, and low-performing Standardbred and endurance horses.

RESULTS: Nine genes in Standardbred and 61 genes in endurance horses were significantly differentially regulated (P < .001). These genes were related to inflammation (eg, ALOX15B, PLA2G12B, and PENK), oxidant/antioxidant balance (eg, DUOXA2 and GSTO1-1), and stress (eg, V1aR, GRLF1, Homer-2, and MAOB). All these genes were up-regulated, except down-regulated Homer-2 and MAOB. DUOXA2, ALOX15B, PLA2G12B, MAOB, and GRLF1 expression was further validated by RT-qPCR. An increase in glutathione peroxidase (GPx) activity in heparinized whole blood of IAD-affected Standardbred (P = .0025) and endurance horses (P = .0028) also suggests a deregulation of the oxidant/antioxidant balance. There was good correlation (r = .7354) between BAL neutrophil percentage and whole blood GPx activity in all horses.

CONCLUSIONS: This study showed that circulating blood cell gene expression reflects inflammatory responses in tissues. Whether any of the genes have potential for diagnostic applications in the future remains to be investigated. Although not specific for IAD, whole blood GPx activity appears to be correlated with BAL neutrophil percentage. This finding should be further assessed by testing a larger number of horses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app