Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Computational insights into the inhibition of influenza viruses by rupestonic acid derivatives: pharmacophore modeling, 3D-QSAR, CoMFA and COMSIA studies.

The pharmacophore modeling and 3D-QSAR studies were performed on a series of amino alkyl rupestonates (Rupestonic Acid) derivatives reported for H1N1, H3N2 and Influenza B virus, NA inhibition. In order to improve the efficacy of amino alkyl rupestonates derivatives, a four point pharmacophore model with one acceptor and three hydrophobic regions was developed. Furthermore, the 3D-QSAR model was generated based on the pharmacophore hypothesis (AHHH) for each subtype. The hypothesis was more significant with R(2)=0.9204, Q(2)=0.917 for H1N1, R(2)=0.8911, Q(2)=0.8905 for H3N2 and R(2)=0.8385, Q(2)=0.7043 for Influenza B virus. The 3D-QSAR results provided an invaluable insight into structure activity correlation and it was shown that the hydrophobic regions were crucial for inhibitory activity. CoMFA and COMSIA validation had been done by leave one out and no validation methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app