Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

CD47 blockade reduces ischemia/reperfusion injury and improves survival in a rat liver transplantation model.

Orthotopic liver transplantation (OLT) remains the standard treatment option for nonresponsive liver failure. Because ischemia/reperfusion injury (IRI) is an important impediment to the success of OLT, new therapeutic strategies are needed to reduce IRI. We investigated whether blocking the CD47/thrombospondin-1 inhibitory action on nitric oxide signaling with a monoclonal antibody specific to CD47 (CD47mAb400) would reduce IRI in liver grafts. Syngeneic OLT was performed with Lewis rats. Control immunoglobulin G or CD47mAb400 was administered to the donor organ at procurement or to both the organ and the recipient at the time of transplant. Serum transaminases, histological changes of the liver, and animal survival were assessed. Oxidative stress, inflammatory responses, and hepatocellular damage were also quantified. A significant survival benefit was not achieved when CD47mAb400 was administered to the donor alone. However, CD47mAb400 administration to both the donor and the recipient increased animal survival afterward. The CD47mAb400-treated group showed lower serum transaminases, bilirubin, oxidative stress, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining, caspase-3 activity, and proinflammatory cytokine expression of tumor necrosis factor α, interleukin-1β, and interleukin-6. Thus, CD47 blockade with CD47mAb400 administered both to the donor and the recipient reduced liver graft IRI in a rat liver transplantation model. This may translate to decreased liver dysfunction and increased survival of liver transplant recipients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app