JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Multinuclear MR and multilevel data processing: an insight into morphologic assessment of in vivo knee articular cartilage.

Academic Radiology 2015 January
RATIONALE AND OBJECTIVES: Quantitative assessment of knee articular cartilage (AC) morphology using magnetic resonance (MR) imaging requires an accurate segmentation and 3D reconstruction. However, automatic AC segmentation and 3D reconstruction from hydrogen-based MR images alone is challenging because of inhomogeneous intensities, shape irregularity, and low contrast existing in the cartilage region. Thus, the objective of this research was to provide an insight into morphologic assessment of AC using multilevel data processing of multinuclear ((23)Na and (1)H) MR knee images.

MATERIALS AND METHODS: A dual-tuned ((23)Na and (1)H) radio-frequency coil with 1.5-T MR scanner is used to scan four human subjects using two separate MR pulse sequences for the respective sodium and proton imaging of the knee. Postprocessing is performed using customized routines written in MATLAB. MR data were fused to improve contrast of the cartilage region that is further used for automatic segmentation. Marching cubes algorithm is applied on the segmented AC slices for 3D volume rendering and volume is then calculated using the divergence theorem.

RESULTS: Fusion of multinuclear MR images results in an improved contrast (factor >3) in the cartilage region. Sensitivity (80.21%) and specificity (99.64%) analysis performed by comparing manually segmented AC shows a good performance of the automated AC segmentation. The average cartilage volume (23.19 ± 1.38 cm(3); coefficient of variation [COV] -0.059) measured from 3D AC models of four data sets shows a marked improvement over average cartilage volume (23.24 cm(3); COV -0.19) reported earlier.

CONCLUSIONS: This study confirms the use of multinuclear MR data for cartilage morphology (volume) assessment that can be used in clinical settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app