Add like
Add dislike
Add to saved papers

Interactive effect of acute sympathetic activation and exercise intensity on the dynamic response characteristics of vascular conductance in the human calf muscle.

PURPOSE: The effect of acute activation of the sympathetic nervous system on the dynamic response of muscle hyperaemia during exercise at different intensities is not clear.

METHODS: To explore this, six men performed 16, 5-min bouts of intermittent calf contractions at two intensities (25 and 50 % MVC) and two levels of sympathetic activation (CPT cold pressor test, CON control). Mean arterial pressure (MAP) and leg vascular conductance (LVC leg blood flow/MAP) were measured during rest and contractions (3 s intervals), and dynamic response characteristics of LVC were estimated using curve-fitting and empirical modeling.

RESULTS: MAP was ~20 % greater (P ≤ 0.05) during CPT than CON before and during initial contractions at both intensities. At 25 % MVC, CPT reduced the exercise-induced change in LVC (0.109 vs 0.125 ml 100 ml(-1 )min(-1 )mmHg(-1); P < 0.05), an effect attributed to the reduction in the amplitude of the fast growth phase (0.091 vs 0.128 1 ml 100 ml(-1 )min(-1 )mmHg(-1); P < 0.05). At 50 % MVC, CPT also blunted the fast growth phase (0.147 vs 0.189 ml 100 ml(-1 )min(-1 )mmHg(-1); P < 0.05), but the total change in LVC during exercise was unaffected because of a significant reduction in the amplitude of the rapid decay phase and tendency (P = 0.1) for a lower amplitude of the slow decay phase.

CONCLUSION: Increased sympathetic constraint of vasodilation persists during initial contractions but is overcome at the high intensity by a mechanism apparently related to hyperaemic decay.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app