Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

In vitro flowering associated protein changes in Dendrocalamus hamiltonii.

Proteomics 2015 April
In Dendrocalamus hamiltonii, conversion of vegetative meristem to a floral meristem was successfully achieved on flower induction medium. A total of 128 differentially expressed proteins were evidenced by 2DE in floral meristem protein profiles. Analysis of 103 proteins through PMF revealed change in abundance in the content of 79 proteins, disappearance and new appearance in the content of 7 and 17 proteins, respectively. MS/MS and subsequent homology search identified 65 proteins that were involved in metabolism (22 proteins), regulatory (11 proteins), signaling and transportation (12 proteins), stress (6 proteins), flowering (8 proteins), and unknown functions (6 proteins). The data suggested that change in metabolism related proteins might be providing nutrient resources for floral initiation in D. hamiltonii. Further, interactive effects of various proteins like bHLH145, B-4c transcription factors (heat stress transcription factor), maturase K, MADS box, zinc finger proteins, and scarecrow-like protein 21 (flowering related), a key enzyme of ethylene biosynthesis SAMS (S-adenosylmethionine synthase) and aminocyclopropane-1-carboxylate synthase, improved calcium signaling related proteins (CML36), and change in phytohormone related proteins such as phosphatase proteins (2c3 and 2c55), which are the positive regulators of gibberellic acid and phytochrome regulation related proteins (DASH, LWD1) might be the possible major regulators of floral transition in this bamboo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app