JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, N.I.H., INTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Inhibition of LSD1 reduces herpesvirus infection, shedding, and recurrence by promoting epigenetic suppression of viral genomes.

Herpesviruses are highly prevalent and maintain lifelong latent reservoirs, thus posing challenges to the control of herpetic disease despite the availability of antiviral pharmaceuticals that target viral DNA replication. The initiation of herpes simplex virus infection and reactivation from latency is dependent on a transcriptional coactivator complex that contains two required histone demethylases, LSD1 (lysine-specific demethylase 1) and a member of the JMJD2 family (Jumonji C domain-containing protein 2). Inhibition of either of these enzymes results in heterochromatic suppression of the viral genome and blocks infection and reactivation in vitro. We demonstrate that viral infection can be epigenetically suppressed in three animal models of herpes simplex virus infection and disease. Treating animals with the monoamine oxidase inhibitor tranylcypromine to inhibit LSD1 suppressed viral lytic infection, subclinical shedding, and reactivation from latency in vivo. This phenotypic suppression was correlated with enhanced epigenetic suppression of the viral genome and suggests that, even during latency, the chromatin state of the virus is dynamic. Therefore, epi-pharmaceuticals may represent a promising approach to treat herpetic diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app