JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Synergistic effects of carboxymethyl-hexanoyl chitosan, cationic polyurethane-short branch PEI in miR122 gene delivery: accelerated differentiation of iPSCs into mature hepatocyte-like cells and improved stem cell therapy in a hepatic failure model.

Acta Biomaterialia 2015 Februrary
MicroRNA122 (miR122), a liver-specific microRNA, plays critical roles in homeostatic regulation and hepatic-specific differentiation. Induced pluripotent stem cells (iPSCs) have promising potential in regenerative medicine, but it remains unknown whether non-viral vector-mediated miR122 delivery can enhance the differentiation of iPSCs into hepatocyte-like cells (iPSC-Heps) and rescue thioacetamide-induced acute hepatic failure (AHF) in vivo. In this study, we demonstrated that embedment of miR122 complexed with polyurethane-graft-short-branch polyethylenimine copolymer (PU-PEI) in nanostructured amphiphatic carboxymethyl-hexanoyl chitosan (CHC) led to dramatically enhanced miR122 delivery into human dental pulp-derived iPSCs (DP-iPSCs) and facilitated these DP-iPSCs to differentiate into iPSC-Heps (miR122-iPSC-Heps) with mature hepatocyte functions. Microarray and bioinformatics analysis further indicated that CHC/PU-PEI-miR122 promoted the gene-signature pattern of DP-iPSCs to shift into a liver-specific pattern. Furthermore, intrahepatic delivery of miR122-iPSC-Heps, but not miR-Scr-iPSC-Heps, improved liver functions and rescued recipient survival, and CHC-mediated delivery showed a better efficacy than that using phosphate buffered saline as a delivery vehicle. In addition, these transplanted miR122-iPSC-Heps remained viable and could produce circulatory albumin for 4 months. Taken together, our findings demonstrate that non-viral delivery of miR122 shortens the time of iPSC differentiation into hepatocytes and the delivery of miR122-iPSC-Heps using CHC as a vehicle exhibited promising hepatoprotective efficacy in vivo. miR122-iPSC-Heps may represent a feasible cell source and provide an efficient and alternative strategy for hepatic regeneration in AHF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app